
the l imi t s  of va r i a t ion  of the p a r a m e t e r  s fo r  d i f ferent  values  of ~/1 and Y2, and a l so  the var ia t ion  of Ra~ as a 
function of these  p a r a m e t e r s .  
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G R A V I T A T I O N A L  F I E L D  

V. N. K u c h k i n  

AN I N F I N I T E  V O L U M E  

UDC 541.24:532.5 

The r e s i s t i ng  f o r c e s ,  ve loc i t i e s ,  and shape p a r a m e t e r s  of gas  bubbles r i s ing  in an infinite 
v o l u m e  of liquid a r e  found analyt ical ly .  

The laws of motion of gas bubbles re la t ive  to  a liquid a r e  fundamental  for  the cons t ruc t ion  of a theory  of 
two-phase  media  [1]. Ord inar i ly  in the theore t i ca l  descr ip t ion  of the laws of mot ion of bubbles in a liquid it is 
a s s u m e d  that  the bubbles a r e  sphe re s  of radius  a and that  the i r  motion in the liquid is potent ial  and sa t i s f i e s  
the boundary-va lue  p r o b l e m  [2] 

h~----0; u = g r a d ~ ;  u~----0 at r=a; u - + U  as r ~ c ~ .  (1) 

The solution of p rob lem (1) d e t e r m i n e s  the behav io r  of the no rma l  u r and tangential  u 0 veloci ty  co mp o -  
nents in the neighborhood of a bubble:  

1 

and the p r e s s u r e  dis t r ibut ion on the su r face  of a bubble is desc r ibed  by Bernou l l i ' s  equation 

0__ [u~lr=. + p. = eonst. (3) 
2 

Equations (2) and (3) a re  solved for  gas bubbles sa t i s fy ing  the p r e s s u r e  balance condition 

2~ 
P0 = Pb- -  - -  R (4) 

I t  follows f r o m  the condition of s ta t ic  equ i l ib r ium (4) that  the bubbles can be spher i ca l  e i ther  if they are  
ve ry  sma l l ,  when the second t e r m  is l a rge ,  or  a re  s ta t ionary  with r e s p e c t  to the liquid. In other  cases  the 
nonunfformity of the p r e s s u r e  d is t r ibut ion over  the sur face  of a bubble desc r ibed  by Eqs.  (2) and (3) mus t  lead 
to its de fo rmat ion  into an e l l ipsoid  f la t tened in the d i rec t ion  of mot ion [2], and to an i nc r ea se  in the a r ea  of the 
in te r face  and consequently to an inc rease  in the d iss ipa t ive  fo r ce s  as the bubble moves  through a v i s c o u s  
liquid. 

Thus ,  to find the laws of motion of a gas bubble it is n e c e s s a r y  to solve the p r o b l e m  of the flow of an 
e l l ipsoidal  bubble and the ef fec t  of its ve loc i ty  with r e s p e c t  to the liquid on i ts  shape.  

T r a n s l a t e d  f r o m  Inzhene rno -F iz i chesk i i  Zhurna l ,  Vol. 38, No. 1, pp. 107-111, J anua ry ,  1980. Original  
a r t i c l e  submit ted  J anua ry  22, 1979. 
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Inane l I tp t i ca l  coordinate  sys t emwi th  its or ig in  at the cen ter  of mass  of a bubble 

x = c ch ~ cos rl cos T; y = c ch ~ cos ~l sin ~; z = c sh ~. sin ~l, (5) 

As ~ -- % c ~ 0 these equations approach those for spherical coordinates, where 0 -< ~ -< oo, 0 -< O -< ~, 0 -< 
~O -<- 2v. For axisymmetric motion the boundary-value problem (i) reduces to the solution of the equations 

# Y  (D + th ~ dY (g____~) + ZY (D =0 ,  (6) 
d~  d~ 

d 2 R (~1) " tg ~1 dR 01) ~,R (B) = O, ( 7 )  
d~l ~ d~i 

where  Y (0 and R (r~) a re  components  of the veloci ty potential  

(L n) = R (n) Y (~), 

and ~ is the separa t ion  constant ,  which can be found f rom the express ion  

% = n ( n + l ) ;  n = l ,  2, 3 . . . . .  

Making the changes of var iab les  

i sh [  - p ,  

(8) 

(9) 

(10) 

sin~l = k, 

and taking account of (9), Eqs. (6) and (7) take the conventional form of Legendre equations 

( i t )  

arZy dY 
0 - f )  d--~- - -  2p ~ + ZY --0; 

( l ~ k  2)~d2R ~ 2 k  dR +~R___O. 
dk ~ dk 

02) 

(13) 

The general solutions of these equations are sums of Legendre functions Pn(X) and Qn(x) of the first and 
second kinds, respectively. The potential ~o(~, ~)I~ =0 must be bounded, the flow is potential, the zonal 
harmonic Rn(k) cannot change sign more than once in the interval 0 -< I/~ ~, and therefore 

~. ---- 2; n = 1, 
R,~ (k) = k. 

04) 

Taking account  of (14), the general  solut ion of Eq. (12) takes  the f o r m  

( V / ' I + p  1 ! .  (16) Y (p) = fl~p + Bi p ln 1 - - p  

The coefficients  A t and B1 are  found f rom the boundary condition at the surface of a bubble 

dY ] = 0  
dp p=po 

and the condition that the velocity of the bubble is U at infinity. After satisfying these conditions and taking 
account of (10), (11), and (15), the general solution for the velocity potential (8) is given by 

Ucsin~ [ (  th~o +arc tgsh~o)  s h ~ - - s h ~ a r c t g s h ~ - - l ]  (17) 
q~ (~' ~) -- A ch ~------~ 

and the no rma l  u~ and tangential  u~ veloci ty components  by 

�9 Usin~l [(  thee + a r c t g s h ~ o ) c h ~ - - c h ~ a r c t g s h ~ - - t h ~ J ;  (18) 
u~ = - -  A I / o h  ~ ~. - -  cos" r I eh ~o 

Ucos~ I (  th~o + a r c t g s h ~  ) s h ~ - - s h ~ a r c t g s h ~ - - l ] .  
u. = A V ch ~ ~ - -  cos~ ~ ch ~-----~ 

(19) 
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Fig. 1. Rate  of r i se  of a bub- 
ble as a function of its radius~ 
(U is the rate of r i se  of a bubble, 
m/sec ;  R 0 = c cosh ~03~'~0 is the 
equivalent radius of the bubble, 
m); 1 ) theore t ica l  dependence of 
ra te  of r i se  on radius;  2) e x p e r i -  
mental  dependence of ra te  of 
r i se  on radius f rom data in [1, 3]. 

To save wri t ing in Eqs. (17)-(19) we have introduced the notation 

A=a rc tg  sh ~o th ~o 
e 

ch ~=o 2 

It follows f rom (18) and (19) that as ~0 -"  oo and c ~ 0, c cosh }0 ~ c sinh ~0 : a; i .e. ,  when the bubble approaches  
a spher ica l  shape the velocity of the liquid at its surface  

3 
limu,~o . . . .  Ucos~l; limu~o =0  
c~O 2 C,-~O 

agrees  with the known express ions  (2). The re s i s t ance  Fp to the motion of a bubble in a viscous liquid [2] can 
be calculated f r om (17)-(19). 

By taking account of (19) the energy E diss ipated as a r e su l t  of viscous effects  in the ax i symmet r i c  
potential  flow of a liquid 

Ou,lo dE = 2~ U~o - -  ds 
- ~ On (20) 

$ 

can be wri t ten  in the fo rm 

dE 4:~U~th~0 [ 1 1- -sh~0 arctg sh_~0] 
- -  d-~---- A~ch~0 shZ~ ~ + sh3~ ~ �9 (21) 

The diss ipat ive force  F~ acting on a gas bubble is given by the express ion  

F , =  1 O ( dE ) 4~cUth~o [ 1 l - - sh '~~  arctg sh~0 ] .  (22) 
2 OU - ~ -  = A z ch ~0 sh z ~o ~- sh s ~0 

The rate  of r i se  of a bubble U for  steady motion can be de termined  by equating the force  F~ to the 
buoyant fo rce  FA: 

F~ = FA, (23) 

whe re 

FA = (PL ~ pg)gV ~,~ pLgV. 
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The simultaneous solution of Eqs.  (22) and (23) de te rmines  the ra te  of r i se  U of  a bubble 

U = C2pLgAZ ch~ ~o 
3~F 

Here 

(24) 

F = 1 .~ 1 - -  sh z ~-o arctg 1 
sh z ~0 sh a ~0 sh ~0 

The shape p a r a m e t e r s  of a gas bubble c and ~0 a re  de te rmined  f rom an analysis  of Eq. (4). In the plane 
of axial s y m m e t r y  the boundary of a bubble is an el l ipse whose radius  of curvature  is 

Re = o (ch 2 ~o - -  cos9 ~)s/~ �9 

ch[o sh [o (25) 

Since the flow of the liquid is assumed potential ,  the p r e s s u r e  Pl at the surface  is found f rom Bernoul l i ' s  
equation 

PU~0 
Pi = Po-- 2 " (26) 

By taking account of (25) and (26) Eq. (4) can be put in the fo rm 

[ 1 2 ] = 0  u~0 (27) 
a R R~- - 2 " 

Here  R 0 is the radius  of a spher ica l  bubble of volume V. Af ter  substi tuting Eqs.  (25), (19), (24), and the condi- 
t ion for  a constant  bubble volume into (27), it follows that 

R0 ----- c ch~o ~t -~o  , (28) 

and the re la t ion between the shape p a r a m e t e r s  c and $0 takes the fo rm:  

c5 = 18~zaFa[ch2[oVt-~o --sh2~0(2 - V'th[o )] (29) 
p3g2AZ ch 5 ~0 ~/-~ 

The ra te  of r i se  of a bubble U calculated by Eq. (24) as a function of its dimensions de termined  by 
Eqs.  (28) and (29) is plotted in Fig. 1. 

The exper imenta l  values  of the ra te  of r i se  of a bubble as a function of its volume are  taken f rom [1, 
3]. The ag reemen t  of calculated and exper imenta l  data is sa t i s fac tory  for  a range of Reynolds numbers  

0 ~ Re - 2c ch ~oUp ~ 2500. 

The di f ference between the theore t i ca l  and exper imenta l  values  fo r  Re > 2500 can be explained by the s epa ra -  
t ion of the boundary l aye r  in the a f t e r p a r t o f  the bubbles,  which reduces  the i r  deformat ion resul t ing  f rom the 
nonuniformity of u~0. 

U 

Ur, u~ 
Po 
Pb 
(Y 

Ro 

PL, Pg 
V 

NOTATION 

is the veloci ty  potential;  
is the ra te  of r i se  of bubble; 
a re  the normal  and tangential  veloci ty  components;  
is the p r e s s u r e  in liquid at bubble sur face ;  
is the gas p r e s s u r e  in bubble, 
is the sur face  tension;  
is the radius  of spher ica l  bubble; 
is the v iscos i ty  of liquid; 
a re  the densi t ies  of liquid and gas; 
is the volume of bubble. 
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Results of an experimental study are  presented which pertain to the magnetorheological effect 
in a ferrofluid at temperatures  near the Curie point of the dispersed phase. 

An external  magnetic field, while structurizing a ferrofluid suspension, radically al ters  its rheological 
propert ies  (magnetorheological effect). This effect was experimentally studied under conditions where the 
magnetic propert ies  of the dispersed ferromagnetic  phase could be assumed to be independent of the tempera-  
ture [1-3]. As is well known, ferromagnetic materials  have the fundamental property that the long-range mag- 
netic order  breaks down due to heating until it completely vanishes (at the Curie point). This limits utilization 
of the magnetorheological effect at temperatures  near the Curie point. On the other hand, simultaneous action 
of a magnetic fluid during heatingof a magnetorheological fluid to temperatures  near the Curie point can be 
useful for  several  practical  applications. 

These authors studied the magnetorheological character is t ics  of a system with a dispersed phase having 
its Curie point within the test range of temperatures .  Other components of the active medium were selected 
oh the basis of a low-temperature sensitivity of their physicochemical propert ies  over the test  range of tem-  
pera tures ,  so as to ensure stability of the system during the entire period of time needed for performing the 
experiment. 

The saturation magnetization of our ferrofluid suspension during changes of the temperature was mea-  
sured by the Faraday method. From the thus obtained curves depicting the temperature dependence was found 
the crit ical point corresponding to the loss of magnetic propert ies  by the substance. This crit ical point was 
145~ The cr i t ica l tempera ture  in aweakmagnetic field (H = 2 Oe) was somewhat higher and equal to 158~ 

Rheological measurements were made with a rotary viscometer  "Rheostat-2",  its nonmagnetic working 
part  placed in a magnetic field normal to the shear plane. The test  cell was thermostated over  the test 
range of temperatures ,  this range extending from room temperature to beyond the crit ical point established 
on the basis of magnetization measurements.  

The resulting flow curves are rheograms character is t ic  of magnetorheological systems with a nonlinear 
dependence of the shearing s t ress  on the strain rate [2]. 

Heating of this ferrofluid suspension during deformation at a given strain rate lowers its effective vis-  
cosity until the magnetorheological effect has been completely compensated. At a temperature near the cr i t i -  
cal point for  this system (t = 145~ the effective viscosity of the magnetorheological composite material  
asymptotically approaches some value within the corresponding crit ical range, while the effect of the magne- 
tic field gradually weakens (Fig. 1). 

The temperature dependence of the viscosity component due to interaction between particles of the sys-  
tem upon application of a magnetic field can be examined through the expression 

where ~'Ht denotes the effective viscosity of the ferrofluid suspension in a magnetic field at a given tempera-  
ture; ~t, viscosity without a magnetic field at that temperature;  and ~H,0, 70, respectively,  the effective vis-  
cosity in a magnetic field and the viscosity without a magnetic field at the initial temperature of the system. 
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