the limits of variation of the parameter s for different values of y; and y,, and also the variation of Ra} as a
function of these parameters,
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MOTION OF GAS BUBBLES IN AN INFINITE VOLUME
OF STATIONARY LIQUID IN A
GRAVITATIONAL FIELD

V. N. Kuchkin : UDC 541,24:532.5

The resisting forces, velocities, and shape parameters of gas bubbles rising in an infinite
volume of liquid are found analytically.

The laws of motion of gas bubbles relative to a liquid are fundamental for the construction of a theory of
two-phase media [1]. Ordinarily in the theoretical description of the laws of motion of bubbles in a liquid it is
agsumed that the bubbles are spheres of radius @ and that their motion in the liquid is potential and satisfies
the boundary~value problem [2]

Ap=0; u=grade¢; «,=0 at r=a u—->U a5 r— oo. 48

The solution of problem (1) determines the behavior of the normal u, and tangential u; velocity compo-
nents in the neighborhood of a bubble:

=U[ 1~(—‘—;—)3]sinn; Uy =—U[1+—;—(—j—)3]cosn. @)

and the pressure distribution on the surface of a bubble is described by Bernoulli's equation
L [t2],—a + pg = const 3
2 nir=4 Py = * ( )

Equations (2) and (3) are solved for gas bubbles satisfying the pressure balance condition

20
Po = Pp— R 4)

It follows from the condition of static equilibrium (4) that the bubbles can be spherical either if they are
very small, when the second term is large, or are stationary with respect to the liquid. In other cases the
nonuniformity of the pressure distribution over the surface of a bubble described by Eqs. (2) and (3) must lead
to its deformation into an ellipsoid flattened in the direction of motion [2], and to an increase in the area of the

interface and consequently to an increase in the dissipative forces as the bubble moves through a viscous
liquid.

Thus, to find the laws of motion of a gas bubble it is necessary to solve the problem of the flow of an
ellipsoidal bubble and the effect of its velocity with respect to the liquid on its shape.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38, No, 1, pp.107-111, January, 1980, Original
article submitted January 22, 1979,

0022-0841/80/3801 - 0075$07.50 © 1980 Plenum Publishing Corporation 75



Inan-elliptieal coordinate system with its origin at the center of mass of a bubble
x=cchfcosncos¥; y=cchEcosnsin¥; 2= cshisinn, (5)

Ag § — =, ¢ — 0 these equations approach those for spherical coordinates, where 0 sf=o, 0=p=7q,0 =<
$ = 2w, For axisymmetric motion the boundary-value problem (1) reduces to the solution of the equations

Y (§) dy (§)

a8 LS =0, )

5 +th§ : +AY () =0, (6
@2Rm) 4R (m) , — :

—— g ———— 7 — AR (n) = 0, h)

where Y (¢) and R(n) are components of the velocity potential

?E M =RMmYE), (8)
and A is the separation constant, which can be found from the expression
A=n{n+1); n=1,23, .... 9
Making the changes of variables
isht =p, 10
sinn = &, (11)

and taking account of (9), Eqgs. (6) and (7) take the conventional form of Legendre eguations

a2y ay
| (I—p i 2p i +AY 12)
d*R dR

(l—R) = 2k AR =0, (13)
( ) I + AR

dk
The general solutions of these equations are sums of Legendre functions Pj,(x) and Q, (x) of the first and

second kinds, respectively. The potential ¢, 7)| ¢ =0 must be bounded, the flow is potential, the zonal
harmonic Rn(k) cannot change sign more than once in the interval 0 = n = 7, and therefore

A=2; n=1, (14)
R, (k) = k. 15y

Taking account of (14), the general solution of Eq. (12) takes the form
Y(p) = Ap+ By (pln /%__—t‘g——l}' {16)

The coefficients Ay and By are found from the boundary condition at the surface of a bubble
dp P=Po

and the condition that the velocity of the bubble is U at infinity. After satisfying these conditions and taking
account of (10), (L1), and (15), the general solution for the velocity potential (8) is given by

& N =— Uesinn [( th +arctgsh§0) shf—shEarctgshf—1 } ) 17
A ch go
and the normal ug and tangential u, velocity components by
. Usinng  thE, a‘l .
=— L W arctgsh& | chg— chEarcigsh& —thE|; 18)
“ AV ch?E — cos?q [( chg, +arclgsh ) : carclg
Ucosn  thE ‘ \ 1
= — Bl SR arctg sh sh&—shg arct sh§-1j. 9
u" AV ch?E—cos?n [( chg, +arctgshl, ) ¢ ’ a9

76



v
B
N 2
@
e

o

/

A

g 2 4 Ry 10°

Fig. 1, Rate of rise of a bub-
ble as a function of its radius;
(Uisthe rate of rise of a bubble,
m/sec; Ry = ¢ cosh £¥Tan &, is the
equivalent radius of the bubble,
m); 1) theoretical dependence of
rate of rise on radius; 2) experi-
mental dependence of rate of
rise on radius from data in [1, 3].

To save writing in Eqgs, (17)-(19) we have introduced the notation

thg, n
A == arctg sh -,
arctg sh §, -+ ohE, 5

It follows from (18) and (19) that as §; — = and ¢ — 0, c cosh & ~csinh §,= a; i.e., whenthe bubble approaches
a spherical shape the velocity of the liquid at its surface

Him ttng = = 3 Ucosy; limug, =0

0 2 g»i
agrees with the known expressions (2). The resistance Fl-l to the motion of a bubble in a viscous liquid [2] can
be calculated from (17)-(19).

By taking account of (19) the energy E dissipated as a result of viscous effects in the axisymmetric
potential flow of a liquid

dE : auno
——l == 9 ds
$
can be written in the form
—sh2: :
__dE _ AmucU?thE, 1 1 —sh?§, arctg 1 ] ' 1)
dt A%ch Eg sh? Eu sh® EO sh Eu
The dissipative force F“ acting on a gas bubble is given by the expression
__1 9 dE )= 4dnucl th gy { 1 1 —sh?E, arctg 1 ] @2)
* 2 oU \ dt A2 chE, shg, sh3g, shE,

The rate of rise of a bubble U for steady motion can be determined by equating the force Fu to the
buoyant force Fa:

FM=FA» (23)

where

Fp=(p, —pgeV =pLgV.
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The simultaneous solution of Egs. (22) and (23) determines the rate of rise U of a bubble

U= CoLgActly

3uF (24)
Here
1 1—sh?g 1
F = =0 arct .
Shz Eo + Sh3 go g Sh EO

The shape parameters of a gas bubble ¢ and £, are determined from an analysis of Eq. (4). In the plane
of axial symmetry the boundary of a bubble is an ellipse whose radius of curvature is
¢ (ch?E, — cos?n)3/2

Re: ch Eo sh Eo : (25)

Since the flow of the liquid is assumed potential, the pressure p; at the surface is found from Bernoulli's
equation

pu?
Pr=P——5" . (26)
By taking account of (25) and (26) Eq. (4) can be put in the form
1 2 u?
s

Here R, is the radius of a spherical bubble of volume V., After substituting Eqgs. (25), (19), (24), and the condi-
tion for a constant bubble volume into (27), it follows that

Ry =cchk g, , 28)
and the relation between the shape parameters ¢ and ) takes the form:

o= 18u?0F2 [ch?E, V' ThE, —sh?E(2— V'ihE, )] (29)
p3g2A2 cho &y 1/ T E '

The rate of rise of a bubble U calculated by Eq. (24) as a function of its dimensions determined by
Eqgs. (28) and (29) is plotted in Fig, 1,
The experimental values of the rate of rise of a bubble as a function of its volume are taken from [1,
3]. The agreement of calculated and experimental data is satisfactory for a range of Reynolds numbers
2c ch &Up
u

The difference between the theoretical and experimental values for Re > 2500 can be explained by the separa-
tion of the boundary layer in the afterpartof the bubbles, which reduces their deformation resulting from the

nonuniformity of Ugo-

0<Re = < 2500.

NOTATION
@ is the velocity potential;
U is the rate of rise of bubble;
Uy, Up are the normal and tangential velocity components;
Po is the pressure in liquid at bubble surface;
Pb is the gas pressure in bubble,
a is the surface tension;
R, is the radius of spherical bubble;
7] is the viscosity of liquid;
AL, Pg are the densities of liquid and gas;
v is the volume of bubble.
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MAGNETORHEOLOGICAL EFFECT NEAR THE CURIE POINT

Z. P, Shul'man, V. I. Kordonskii, UDC 532.135
and I, V. Prokhorov

Results of an experimental study are presented which pertain to the magnretorheological effect
in a ferrofluid at temperatures near the Curie point of the dispersed phase,

An external magnetic field, while structurizing a ferrofluid suspension, radically alters its rheological
properties (magnetorheological effect). This effect was experimentally studied under conditions where the
magnetic properties of the dispersed ferromagnetic phase could be assumed te be independent of the tempera-
ture [1-3]. As is well known, ferromagnetic materials have the fundamental property that the long-range mag-
netic order breaks down due to heating until it completely vanishes (at the Curie point). This limits utilization
of the magnetorheological effect at temperatures near the Curie point. On the other hand, simultaneous action
of a magnetic fluid during heatingof a magnetorheological fluid to temperatures near the Curie point can be
useful for several practical applications.

These authors studied the magnetorheological characteristics of a system with a dispersed phase having
its Curie point within the test range of temperatures. Other components of the active medium were selected
on the basis of a low-temperature sensitivity of their physicochemical properties over the test range of tem-
peratures, so as to ensure stability of the system during the entire period of time needed for performing the
experiment,

The saturation magnetization of our ferrofluid suspension during changes of the temperature was mea-
sured by the Faraday method. From the thus obtained curves depicting the temperature dependence was found
the critical point corresponding to the loss of magnetic properties by the substance, This critical point was
145°C. Thecriticaltemperature inaweak magnetic field (H = 2 Oe) was somewhat higher and equal to 158°C,

Rheological measurements were made with a rotary viscometer "Rheostat-2", ifs nonmagnetic working
part placed in a magnetic field normal to the shear plane. The test cell was thermostated over the test
range of temperatures, this range extending from room temperature to beyond the critical point established
on the basis of magnetization measurements.

The resulting flow curves are rheograms characteristic of magnetorheological systems with a nonlinear
dependence of the shearing stress on the strain rate [2].

Heating of this ferrofluid suspension during deformation at a given strain rate lowers its effective vis-
cogity until the magnetorheological effect has been completely compensated. At a temperature near the criti-
cal point for this system (t = 145°C) the effective viscosity of the magnetorheological composite material
asymptotically approaches some value within the corresponding critical range, while the effect of the magne-
tic field gradually weakens (Fig. 1),

The temperature dependence of the viscosity component due to interaction between particles of the sys-
tem upon application of a magnetic field can be examined through the expression

Nt — Nt
A‘n = e .
Nago — Mo (1)
where vyt denotes the effective viscosity of the ferrofiuid suspension in a magnetic field at a given tempera-

ture; ny, viscosity without a magnetic field at that temperature; and ng 4, 7y, respectively, the effective vis-
cosity in a magnetic field and the viscosity without a magnetic field at the initial temperature of the system,
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